Cientistas da Universidade de Cambridge, no Reino Unido, usaram luz para empurrar elétrons através de uma barreira impenetrável pelos padrões da física clássica.
Embora o chamado tunelamento quântico esteja estritamente associado com a natureza de onda das partículas subatômicas, esta é a primeira vez que o fenômeno foi induzido e controlado por luz.
Partículas normalmente não conseguem atravessar paredes. Contudo, se elas forem pequenas o suficiente, passam a assumir uma dupla personalidade, sendo partícula e onda.
E, assumindo-se como ondas, a mecânica quântica dá-lhes a permissão para que elas atravessem barreiras de outra forma intransponíveis: é o chamado tunelamento quântico.
Partículas de matéria com luz
Enquanto, na física clássica, ao se deparar com uma barreira, uma partícula é sempre refletida, na mecânica quântica a função de onda dessa partícula/onda não assume um valor zero instantaneamente, o que significa que ela pode atravessar a barreira, dependendo de sua energia e da espessura da barreira.
Controlar esse processo com luz é outra história, mas uma história que pode ter no final os chamados condensados - o equivalente de supercondutores e superfluidos, também capazes de viajar sem qualquer perda ou "atrito", mas em materiais semicondutores.
Peter Cristofolini e seus colegas conseguiram o feito juntando matéria com luz - elétrons com fótons - para criar uma espécie de nova partícula, que eles batizaram de dipolaritons.
"Os filhos desse casamento da matéria com a luz são realmente novas partículas indivisíveis, feitas tanto de luz quanto de matéria, que desaparecem através de paredes de semicondutores à vontade," explica o pesquisador.
Ou seja, tornado um só, o par fóton-elétron pode ser controlado como um feixe de luz, mas movimentando matéria através de matéria.
Como, pelo tunelamento controlado por luz, a matéria manipulada pode ser considerada como estando em dois lugares ao mesmo tempo, essas novas partículas eletrônicas poderão ser usadas para transferir informações da física em escala atômica para a física em escala humana - em outras palavras, tornar a mecânica quântica visível a olho nu.
Nenhum comentário:
Postar um comentário